

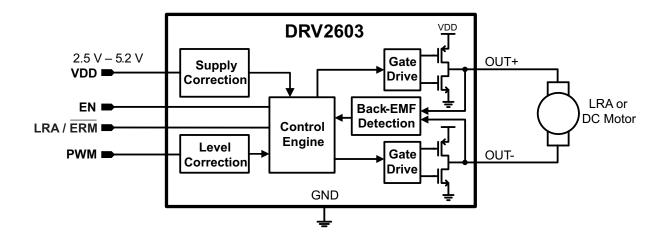
Haptic Drive with Auto-Resonance Detection for Linear Resonance Actuators (LRA)

Check for Samples: DRV2603

FEATURES

- Flexible Haptic/Vibra Driver
 - LRA (Linear Resonance Actuator)
 - ERM (Eccentric Rotating Mass)
- · Auto Resonance Tracking for LRA
 - No Frequency Calibration Required
 - Automatic Drive Commutation
 - Automatic Braking Algorithm
 - Wide Input PWM Frequency Range
- Constant Vibration Strength Over Supply
- Automatic Input Level Translation
- 0% to 100% Duty Cycle Control Range
- Fast Start Up Time
- Differential Drive from Single-Ended Input
- Wide Supply Voltage Range of 2.5 V to 5.2 V
- 1.8 V Compatible, 5 V Tolerant Digital Pins
- Available in a 2 mm x 2 mm x 0.75 mm leadless QFN package (RUN)

APPLICATIONS


- Mobile Phones
- Tablets
- Touch Enabled Devices

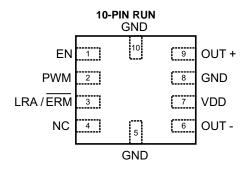
DESCRIPTION

The DRV2603 is a haptic driver designed specifically to solve common obstacles in driving both Linear Resonance Actuator (LRA) and Eccentric Rotating Mass (ERM) haptic elements. The DRV2603 is also designed for low latency, has excellent efficiency, and plenty of drive strength for actuators commonly used in the portable market.

LRA actuators typically have a narrow frequency band over which they have an adequate haptic response. This frequency window is typically ±2.5 Hz wide or less, so driving an LRA actuator presents a challenge. The DRV2603 solves this problem by emplovina auto resonance tracking, automatically detects and tracks the optimum commutation frequency. This means that any input PWM frequency within the input range (10 kHz to 250 kHz) will automatically produce the correct resonant output frequency. As an additional benefit, the DRV2603 implements an optimal braking algorithm to stop the LRA from ringing out, leaving the user with a crisp haptic sensation.

For both ERM and LRA actuators, the automatic input level translation solves issues with low voltage PWM sources without adding additional external components, so if the digital I/O levels vary, the output voltage does not change. The DRV2603 also has supply correction that ensures no supply regulation is required for constant vibration strength, allowing an efficient, direct-battery connection.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

Part Number	Package	Symbolization
DRV2603RUNR	10-pin, 2 mm x 2 mm x 0.75 mm, RUN	2603
DRV2603RUNT	10-pin, 2 mm x 2 mm x 0.75 mm, RUN	2603

PINOUT INFORMATION

PIN FUNCTIONS

	PIN	INPUT/	
NAME	NUMBER	OUTPUT/ POWER (I/O/P)	DESCRIPTION
PWM	2	1	Input signal
EN	1	1	Device enable
LRA/ERM	3	I	Mode selection
GND	5, 8, 10	Р	Supply ground
NC	4	1	No Connection
OUT-	6	0	Negative haptic driver differential output
OUT+	9	0	Positive haptic driver differential output
VDD	7	Р	Supply Input (2.5 V to 5.5 V)

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range, $T_A = 25$ °C (unless otherwise noted)

			VALUE	UNIT
	Supply voltage	VDD	-0.3 to 6.0	V
V_{I}	Input voltage	EN, PWM, LRA/ERM	-0.3 to $V_{DD} + 0.3$	V
T_A	Operating free-air temp	perature range	-40 to 85	°C
T_J	Operating junction tem	perature range	-40 to 150	°C
T _{stg}	Storage temperature ra	ange	-65 to 150	°C
	CCD Drotaction	НВМ	2000	V
	ESD Protection	CDM	500	V

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

Product Folder Links: DRV2603

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	RUN (10 pins)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	153.7	
θ_{JCtop}	Junction-to-case (top) thermal resistance	86	
θ_{JB}	Junction-to-board thermal resistance	70.4	°C/\/
Ψ_{JT}	Junction-to-top characterization parameter	1.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	70.4	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	

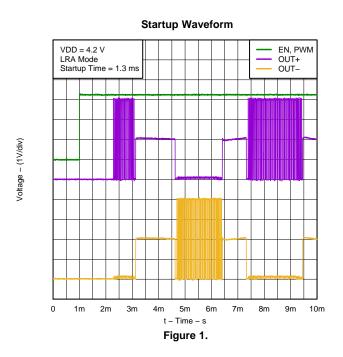
⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

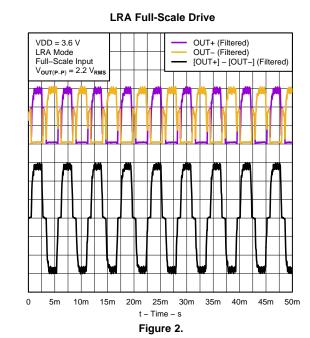
RECOMMENDED OPERATING CONDITIONS

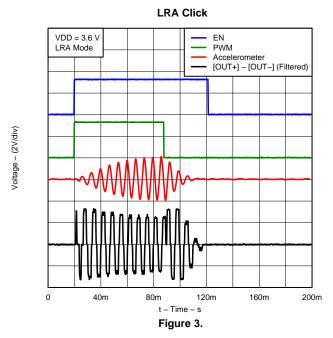
			MIN	TYP MAX	UNIT
V_{DD}	Supply voltage	VDD	2.5	5.2	V
f_{PWM}	PWM Input frequency		10	250	kHz
R_L	Load Impedance	V _{DD} = 5.2 V	8		Ω
F_0	Supported LRA frequency	Auto resonance tracking range for LRA	140	220	Hz
V_{IL}	Digital input low voltage	EN, PWM, LRA/ERM		0.6	V
V_{IH}	Digital input high voltage	EN, PWM, LRA/ERM	1.2		V
T _A	Operating free-air temperature range		-40	85	°C

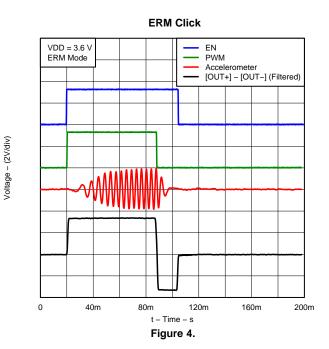
ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_{DD} = 3.6$ V (unless otherwise noted)

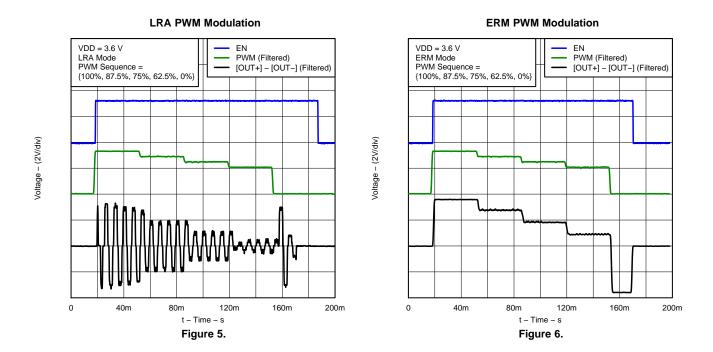

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
I _{IL}	Digital input low current	EN, PWM, LRA/ERM	V _{DD} = 5.0 V, V _{IN} = 0 V			1	μΑ
	District insert high account	EN	$V_{DD} = 5.0 \text{ V}, V_{IN} = V_{DD}$			6	μΑ
I _{IH}	Digital input high current	PWM, LRA/ERM	V _{DD} = 5.0 V, V _{IN} = V _{DD}			3	μΑ
I _{SD}	Shut down current	V _{EN} = 0 V			0.3	3	μΑ
I _{DDQ}	Quiescent current	V _{EN} = V _{DD} , ERM Mode, 5	50% duty cycle input, No load		1.7	2.5	mA
R _{OUT}	Output impedance in shutdown	OUT+ to GND, OUT- to	GND		15		kΩ
t _{SU}	Start-up time	Time from EN high to out	tput signal		1.3		ms
f _{SW}	PWM output frequency			19.5	20.3	21.5	kHz
	Average better aurent during	Duty Cycle = 100%, LRA	Mode, Load = 25 Ω LRA		55		
I _{BAT,AVG}	Average battery current during operation	Duty Cycle = 80%, ERM ERM	Mode, $R_L = 17 \Omega$, 2V rated		59		mA
R _{DS-HS}	Drain to source resistance, high-side				1.05		Ω
R _{DS-LS}	Drain to source resistance, low-side				0.85		Ω
	Differential output valtege	Duty Cycle = 100%, LRA	Mode, Load = 25 Ω LRA		2.2		V _{RMS}
V _{OUT}	Differential output voltage	Duty Cycle = 100%, ERM	M Mode, R _L = 20 Ω ERM		3.3		V


Product Folder Links: DRV2603




TYPICAL CHARACTERISTICS

Voltage - (1V/div)



Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

TYPICAL CHARACTERISTICS (continued)

TEST SETUP FOR GRAPHS

With no output filter, the output waveform from the DRV2603 looks similar to Figure 1. The output signal contains both a high frequency PWM component and a fundamental drive component which causes motion in the actuator. To measure or observe the fundamental drive component, a low-pass filter must be used to eliminate the PWM component. The digital filter function on a digital oscilloscope was utilized in the rest of the Typical Characteristic figures. A 1st order, low-pass filter corner between 1 kHz and 3.5 kHz is recommended.

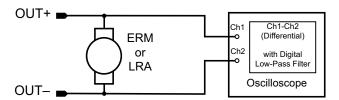


Figure 7. Test Setup for Graphs

TYPICAL CHARACTERISTICS (continued)

ALTERNATE TEST SETUP

If a digital oscilloscope with digital filtering is not available, a 1st order, low-pass, RC filter network can be used instead. Care must be taken not to use a filter impedance that is too low. This can interfere with the back-EMF behavior of the actuator and corrupt the operation of the auto resonance function. A recommended circuit is shown in Figure 8.

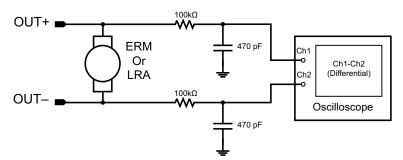


Figure 8. Alternate Test Setup

SYSTEM DIAGRAMS

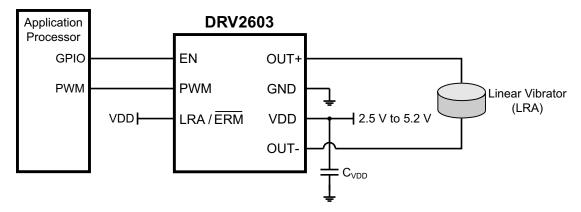


Figure 9. System Diagram for LRA

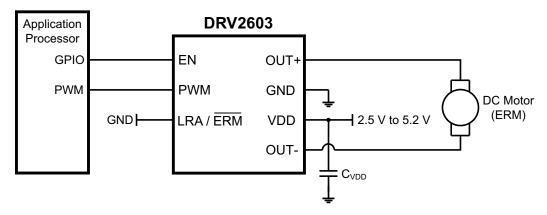


Figure 10. System Diagram for ERM

APPLICATION INFORMATION

OPERATION

The DRV2603 is a haptic and vibratory driver designed specifically to meet the needs of haptic and vibration applications in the portable market. The DRV2603 has two modes of operation, ERM mode and LRA mode. ERM mode is designed to drive *Eccentric Rotating Mass* motors, which are generally DC motors of the bar or coin type. LRA mode is designed to drive *Linear Resonance Actuators*, also known as linear vibrators, which require an alternating signal that commutates at or very near the natural mechanical resonance frequency of the actuator. These actuators present a unique control challenge that is solved in the DRV2603 by auto resonance tracking.

CONSTANT VIBRATION STRENGTH

The DRV2603 features power supply feedback, so no supply regulation is required, and a direct battery connection may be used. If the supply voltage drifts over time (due to battery discharge, for example), the vibration strength will remain the same so long as there is enough supply voltage to sustain the required output voltage. The DRV2603 PWM input also uses a digital level-shifter, so as long as the input voltage meets the V_{IH} and V_{IL} levels, the vibration strength will remain the same even if the digital levels were to vary. These benefits apply to both ERM mode and LRA mode.

LINEAR RESONANCE ACTUATORS

Linear Resonant Actuators, or LRAs, only vibrate effectively at their resonant frequency. LRAs have a high-Q frequency response due to which there is a rapid drop in vibration performance at offsets of 2 to 3 Hz from the resonant frequency. Many factors also cause a shift or drift in the resonant frequency of the actuator such as temperature, aging, the mass the product to which the LRA is mounted, and in the case of a portable product, the manner in which it is held. Furthermore, as the actuator is driven to its maximum allowed voltage, many LRAs will shift several Hz in frequency due to mechanical compression. All of these factors make a real-time tracking auto-resonant algorithm critical when driving LRA to achieve consistent, optimized performance.

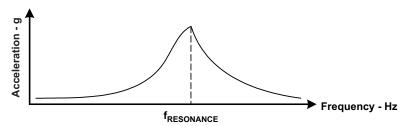


Figure 11. Typical LRA Response

AUTO RESONANCE ENGINE FOR LRA

No frequency calibration or actuator training is required to use the DRV2603. The DRV2603 auto resonance engine tracks the resonant frequency of an LRA in real time. If the resonant frequency shifts in the middle of a waveform for any reason, the engine will track it cycle to cycle. The auto resonance engine accomplishes this by constantly monitoring the back-EMF of the actuator. The DRV2603 tracking range for LRA devices is 140 Hz to 140 Hz.

LRA MODE

When in LRA mode, the DRV2603 employs a simple control scheme that is designed to be compatible with ERM mode signaling. A 100% input duty cycle gives full vibration strength, and a 0% to 50% input duty cycle gives no vibration strength. The auto resonance detection algorithm takes care of the physical layer signaling and commutation required by linear resonance actuators. The DRV2603 implements closed-loop operation comprising a simple feedback loop. If the back-EMF feedback tells the device that the vibration is too low relative to the input duty cycle, the DRV2603 will increase the vibration strength. If the back-EMF feedback tells the device that the vibration is too high relative to the input duty cycle, the DRV2603 automatically enforces a braking algorithm. It follows that a 0% to 50% input duty cycle will always enforce braking until the LRA is no longer moving. This form of signaling is used to preserve the same input format for both ERM and LRA drive; therefore, no software changes are required when switching between ERMs and LRAs with the DRV2603.

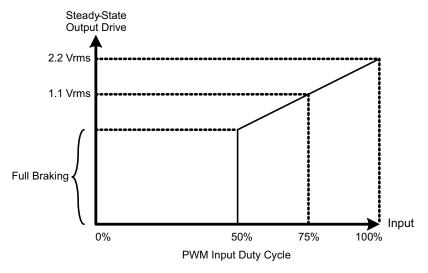


Figure 12. LRA Mode

The exact full-scale output voltage depends on the physical construction of the LRA itself. Some LRA devices give a small amount of back-EMF during full scale vibration, and other LRA devices give a much larger amount. A nominal full-scale output value is 2.2 V_{RMS} , but it can typically vary as much as +/- 10% depending on the actuator's physical design. The output voltage can be approximated by the following equation between 50% and 100% input duty cycle.

$$V_{OUT (RMS)} = V_{OUT (FULL-SCALE)} \left[\frac{Input Duty Cycle \%}{50} - 1 \right]$$
(1)

Since the DRV2603 includes constant output drive over supply voltage, the output PWM duty cycle will be adjusted so that the relationship in the above equation will hold true regardless of the supply voltage.

Submit Documentation Feedback

Copyright © 2012–2014, Texas Instruments Incorporated

ECCENTRIC ROTATING MASS MOTORS (ERM)

Eccentric Rotating Mass motors, or ERMs, are typically DC-controlled motors of the bar or coin type. ERMs can be driven in the clockwise direction or counter-clockwise depending on the polarity of voltage across its two terminals. Bi-directional drive is made possible in a single-supply system by differential outputs that are capable of sourcing and sinking current. This feature helps eliminate long vibration tails which are undesirable in haptic feedback systems..

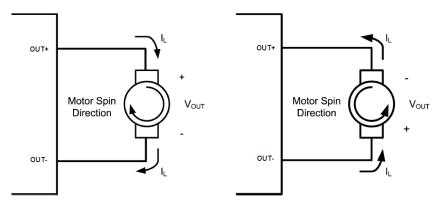


Figure 13. Reversal of Motor Direction

Another common approach to driving DC motors is the concept of overdrive voltage. To overcome the inertia of the motor's mass, they are often *overdriven* for a short amount of time before returning to the motor's rated voltage to sustain the motor's rotation. Negative overdrive is also used to stop (or brake) an ERM quickly by reversing the magnetic field of the driving coil(s).

ERM MODE

The DRV2603 is a compact, cost-effective driver solution for ERM motors. Most competing solutions require external components for biasing or level-shifting, but the DRV2603 requires only one decoupling capacitor giving a total approximate circuit size of 2 mm by 2 mm. This small solution size still comes packed with features such as a level-shifted input, differential outputs for braking, constant drive strength over supply, edge rate control, and a wide input PWM frequency range.

When in ERM mode, the DRV2603 employs a simple control scheme. A 100% input duty cycle gives full-strength forward rotation, a 50% input duty cycle give no rotation strength, and a 0% duty cycle give full-strength reverse rotation. Forcing the motor velocity towards reverse rotation is used to implement motor braking in ERMs. By stringing together various duty cycles over varying amounts of time, a haptic motor control signal will be constructed at the output to precisely drive the motor.

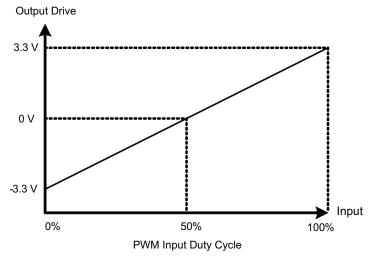


Figure 14. ERM Mode

Product Folder Links: DRV2603

The full-scale, open-load output voltage of the DRV2603 in ERM mode is 3.6V. The output stage has a total nominal R_{DS} of 1.9 Ω . When driving a 20 Ω ERM at full-scale, the differential voltage seen at the outputs is approximately 3.3 V. When driving a 10 Ω ERM at full-scale, the output voltage is approximately 3.0 V.

The voltage seen at the outputs as a function of input duty cycle is given by this equation.

Vout = Vout (Full-scale)
$$\left[\frac{\text{Input Duty Cycle }\%}{50} - 1\right]$$
 (2)

Since the DRV2603 includes constant output drive over supply voltage, the output PWM duty cycle will be adjusted so that the relationship in the above equation will hold true regardless of the supply voltage. The output duty cycle in ERM mode can be approximated by the following equation.

Output Duty Cycle (%) =
$$\frac{\text{Vout(Full-Scale)}}{\text{VDD}} \left[\frac{\text{Input Duty Cycle \%}}{50} - 1 \right] 100\%$$
 (3)

EDGE RATE CONTROL

The DRV2603 output driver implements Edge Rate Control (ERC). This ensures that the rise and fall characteristics of the output drivers do not emit levels of radiation that could interfere with other circuitry common in mobile and portable platforms. Because of ERC, no output filter or ferrites are necessary.

DECOUPLING CAPACITOR

The DRV2603 has a switching output stage which pulls transient currents through the VDD pin. A 0.1 μF, low equivalent-series-resistance (ESR) decoupling capacitor of the X5R or X7R type is recommended for smooth operation of the output driver and the digital portion of the device.

SENDING A HAPTIC EFFECT

Sending a haptic effect with the DRV2603 is straightforward. The procedure is the same for both ERM and LRA drive. The ERM/LRA pin should be tied high or low as shown in the system diagrams. Optimum performance is achieved by using the following steps.

- 1. At or very near the same time, bring the EN pin high and start sourcing PWM waveform. No delays are required. The best startup behavior is usually achieved when momentarily overdriving the actuator for 20 ms to 50 ms. Reference the specifications of the actuator for optimum overdrive characteristics.
- 2. Change the PWM level as needed to achieve the desired effect.
- 3. When the effect is complete, set the PWM duty cycle to 0% if braking is desired. The EN pin must remain high to actively brake the actuator. When braking is complete, set the EN pin low, concluding the haptic effect. When braking an ERM, the user should take care not to brake the actuator for too long, or counterrotation can occur. When braking an LRA, the auto-resonance engine automatically drives the actuator to zero vibration, so no significant reverse-phase vibration will ever occur.

REVISION HISTORY

CI	nanges from Original (June 2012) to Revision A	Page
•	Changed from 1 page data sheet to full data sheet in product folder	1

Product Folder Links : DRV2603

PACKAGE OPTION ADDENDUM

31-Jan-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DRV2603RUNR	ACTIVE	QFN	RUN	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	2603	Samples
DRV2603RUNT	ACTIVE	QFN	RUN	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	2603	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

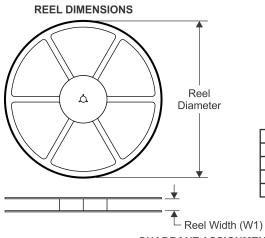
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

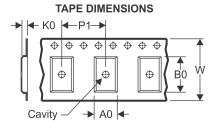
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

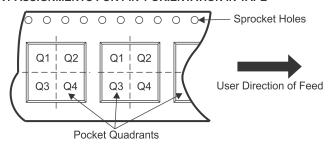
PACKAGE OPTION ADDENDUM


31-Jan-2014


In no event shall TI's liabilit	v arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

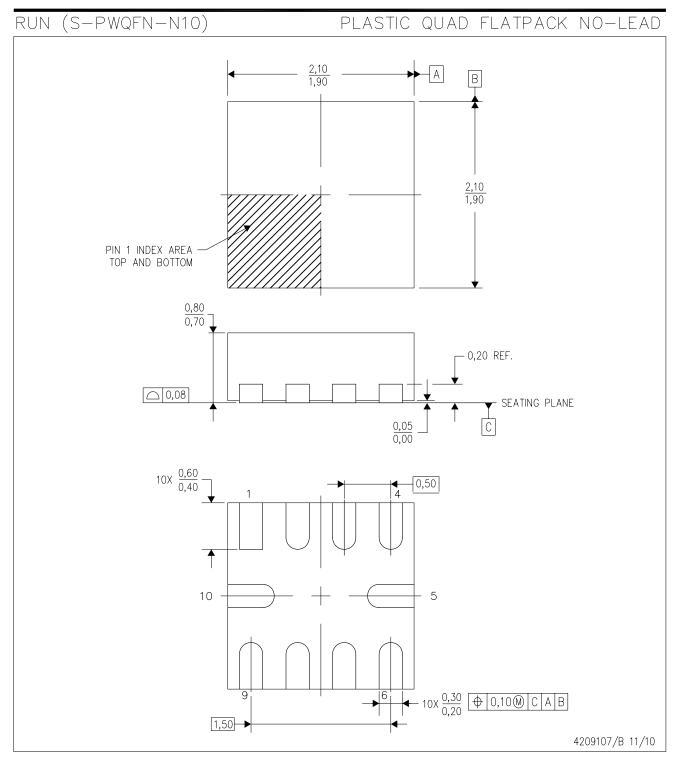
www.ti.com 12-Dec-2014


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

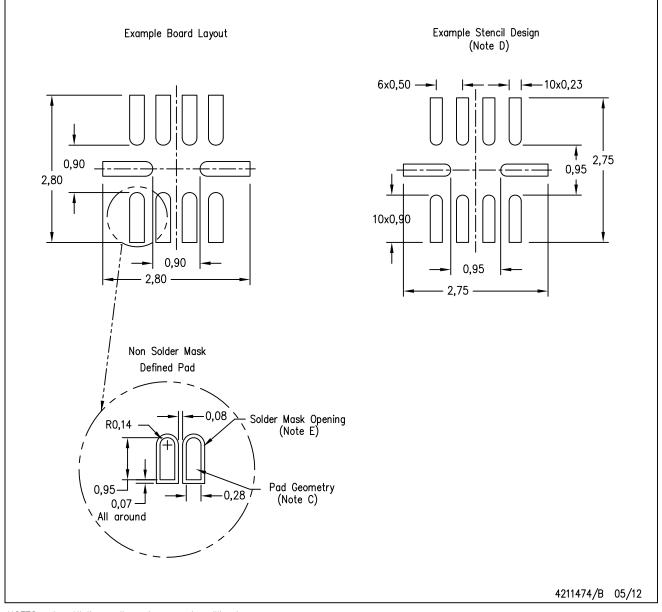
*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV2603RUNR	QFN	RUN	10	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
DRV2603RUNT	QFN	RUN	10	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

www.ti.com 12-Dec-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV2603RUNR	QFN	RUN	10	3000	210.0	185.0	35.0
DRV2603RUNT	QFN	RUN	10	250	210.0	185.0	35.0


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.

RUN (S-PWQFN-N10)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>