

PLCC Series

ET-3014x-1F1W Series Datasheet

Features:

- High luminous Intensity and high efficiency
- Based on Blue: InGaN technology
- Wide viewing angle: 120°
- Excellent performance and visibility
- Suitable for all SMT assembly methods
- IR reflow process compatible
- Environmental friendly; RoHS compliance

Typical Applications

- Signal and Symbol Luminaire
- Indoor Displays
- Backlighting (illuminated advertising, general lighting)
- Interior Automotive Lighting

Table of Contents

General Information	.3
LED Package Dimension and Polarity	.4
Absolute Maximum Ratings	.5
Luminous Flux Characteristics	.5
Characteristic	.6
Forward Voltage Ranks	.6
Reliability Test Items	.7
Characteristic Curves	.8
Product Packaging Information	.9
Revision History	.10
About Edison Opto	.10

General Information

Introduction

Ultra high luminous efficacy, combined with the flexibility in design due to its slim and miniature size, PLCC LED Series are optimized to be used as backlight for LCD display and portable computers.

Product Nomenclature

The following table describes the available color, power, and lens type. For more flux and forward voltage information, please consult the Bin Group document.

Table 1. PLCC 3014 series Nomenclature

LE	X1 D Item		X2 odule	E	X3 mitting Color	X Chip Q		X5 ₂ Seria	
Code	Туре	Code	Туре	Code	Туре	Code	Туре	Code	Туре
Edison	Top LED	3014	3.5x2.8mm	W	Cool White	Α	0.5W		
				Н	Neutral White				
				Х	Warm White				

	X7 Feature
Code	Туре
W	White surface

LED Package Dimension and Polarity

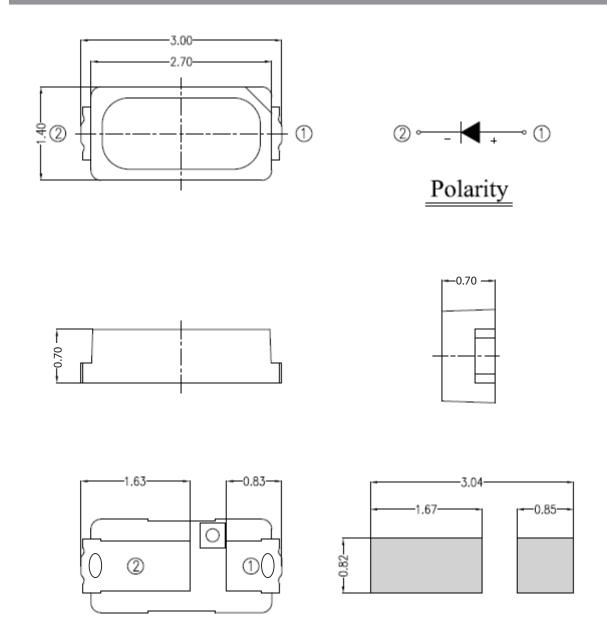


Figure 1. PLCC 3014 series circuit diagram

Notes:

1. All dimensions are measured in mm.

2. Tolerance: ± 0.20 mm

Absolute Maximum Ratings

The following table describe absolute maximum ratings of PLCC 3014 series.

Table 2 . Absolute maximum ratings for PLCC 3014 series

Parameter	Rating	Units	Symbol
Forward Current	30	mA	I _F
Pulse Forward Current (tp<=100µs, Duty cycle=0.25)	100	mA	-
Reverse Voltage	3.6	mA	V_R
LED Junction Temperature	125	°C	T _J
Operating Temperature	-40 ~ +80	°C	-
Storage Temperature	-40 ~ +80	°C	-
Soldering Temperature	260	°C	-
Manual Soldering at 350°C(Max.)	3	Sec	-

Notes:

- 1. Proper current derating must be observed to maintain junction temperature below the maximum at all time.
- 2. LEDs are not designed to be driven in reverse bias.
- 3. tp: Pulse width time

Luminous Flux Characteristics

The following table describes luminous Flux of PLCC 3014 series.

Table 3. Luminous Flux characteristics at Ta=25°C for PLCC 3014 series

Part Name	Color	ı	Luminous Flux (Im	Luminous Intensity	Forward	
rarervanie	Color	Group	Min.	Max.	Typ.(mcd)	Current (mA)
		L34	9.8	11.0		
ET-3014W-1F1W	Cool White	L38	11.0	12.1	4,000	30
		L42	12.1	13.3		
		L34	9.8	11.0		30
ET-3014H-1F1W	Neutral White	L38	11.0	12.1	4,000	
		L42	12.1	13.3		
		L30	8.7	9.8		
ET-3014X-1F1W	Warm White	L34	9.8	11.0	3,600	30
		L38	11.0	12.1		

Note: Luminous intensity is measured with an accuracy of \pm 10%

Characteristic

Optical Characteristics

The following table describes CCT of PLCC 3014 series

Table 4. Optical characteristics at I_F =30mA and Ta=25°C

Part Name	Color	V _F (V)			CRI	Viewing Angle
raitivaille	Color	Min.	Тур.	Max.	Citi	(Degree)
ET-3014W-1F1W	Cool White	3.0		3.6	70	120
ET-3014H-1F1W	Neutral White	3.0		3.6	70	120
ET-3014X-1F1W	Warm White	3.0		3.6	70	120

Note: CRI is measured with an accuracy of $\pm\,5$

Electrical Characteristics

The following table describes forward voltage of PLCC 3014 series

Table 5. Electrical Characteristics Characteristics at T_j =25°C

Part Name	Color	CC.	T(K)	Forward Current	Thermal Resistance (°C/W)	
raitivaille	Coloi	Min.	Max.	(mA)		
ET-3014W-1F1W	Cool White	5,000	8,000	30	40	
ET-3014H-1F1W	Neutral White	3,800	4,500	30	40	
ET-3014X-1F1W	Warm White	2,670	3,250	30	40	

Note: Forward Voltage is measured with an accuracy of \pm 0.1V

Forward Voltage Ranks

Table 6. Forward voltage rank at Ta=25°C

Bin	Condition	Min	Max	Unit
UK-1		3.0	3.1	
UK-2	I _F =30mA	3.1	3.2	
UL-1		3.2	3.3	
UL-2		3.3	3.4	V
UM-1		3.4	3.5	
UM-2		3.5	3.6	
UN-1		3.6	3.7	

Note:

Forward voltage measurement allowance is \pm 0.1V.

Reliability Test Items

The following table describes operating life, mechanical, and environmental tests performed on PLCC series package.

Test 1⁽¹⁾: JEDEC LEVEL 2a Test

Stress Test Stress Conditions		Duration	Failure Criteria
Temperature and Humidity	nidity 60°C/60%RH 120 Hr(<0 168 Hr(≥0		No Catastrophes
IR reflow	Peak temp. = 255~260°C/ <10 Sec.	3 Times	No Catastrophes

Test 2: Other Test

Stress Test	Stress Conditions	Duration	Failure Criteria
Room Temperature Operating Life	25°C , I _F =I DCmax (2)	1000 Hours	(3)
High Temperature High Humidity Operating Life	85°C/ 85%RH , I _F = I DCmax×0.5	1000 Hours	(3)
High Temperature Storage Life	85°C	1000 Hours	(3)
Low Temperature Storage Life	-40°C	1000 Hours	(3)
Non-Operating Thermal Shock	-40°C/125°C 15 min dwell<10 sec transfer	1000Hours/ 200 Cycles	No Catastrophes
Non-Operating Thermal Cycle	-40°C/100°C 30 min dwell <15min transfer	1000Hours/ 200 Cycles	No Catastrophes

- 1. Reliability test 2 is performed after reliability test 1.
- 2. DC max is defined to be under the indicated driving current for PLCC respectively/
- 3. Failure Criteria:
- Electrical failures: VF shifts ≥10%
- Light Output Degradation: Percentage level shift ≥ 35% for PLCC<0.5W
- Light Output Degradation: Percentage level shift \geq 50% at 1,000hrs or 500cycle for PLCC \geq 0.5W
- Visual failures: Broken or damaged package on lens or substrate

Characteristic Curves

Beam Pattern Diagram

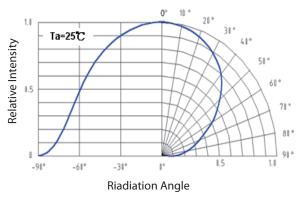


Figure 2. Beam pattern diagram for PLCC 3014 series

Luminous Flux & Temperature

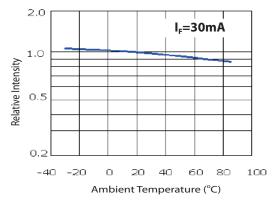


Figure 4. Ambient temperature & relative intensity for PLCC Figure 5. Forward current & forward voltage for PLCC 3014 3014 series

Forward Current & Temperature

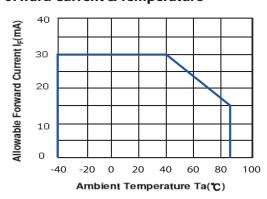


Figure 6. Ambient temperature & forward current for PLCC 3014 series

Luminous Flux & Wavelength

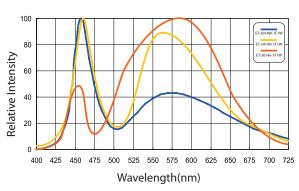
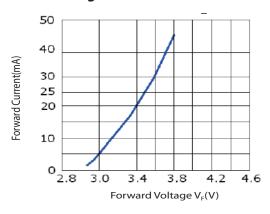



Figure 3. Wavelength & relative intensity for PLCC 3014

Forward Voltage & Forward Current

series

Luminous Flux & Forward Current

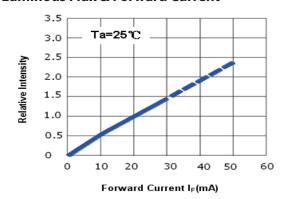
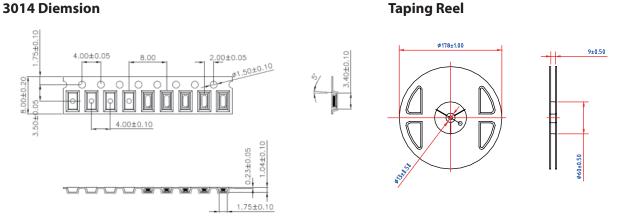
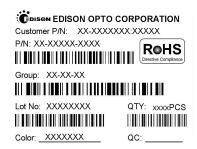
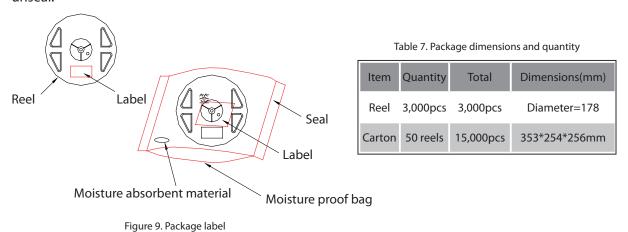


Figure 7. Forward current & relative intensity for PLCC 3014 series

Product Packaging Information


Figure 8. Taping reel dimensions

Package Label

Quantity and Package Dimension

There are two different package quantities for PLCC LEDs. Please confirm the noted quantity before unseal.

Revision History

Table 8. Revision history of PLCC 3014.

Versions	DESCRIPTION	RELEASE DATE
1	1.Establish a datasheet	2011/11/11
2	Update Luminous Intensity Characteristic Update bin group 3.Update packaging	2012/01/16
3	1.Update mcd and forward voltage bin on P.72.Update Characteristic Curve on P.10	2012/01/31
4	1. Update Luminous Intensity Characteristic	2012/08/09

About Edison Opto

Edison Opto is a leading manufacturer of high power LED and a solution provider experienced in LDMS. LDMS is an integrated program derived from the four essential technologies in LED lighting applications- Thermal Management, Electrical Scheme, Mechanical Refinement, Optical Optimization, to provide customer with various LED components and modules. More Information about the company and our products can be found at www.edison-opto.com

Copyright©2012 Edison Opto. All rights reserved. No part of publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo copy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher. The information in this publication are subject to change without notice.

www.edison-opto.com

For general assistance please contact: service@edison-opto.com.tw

For technical assistance please contact: LED.Detective@edison-opto.com.tw